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The crystal structures of Ti11Se4 [Weirich, Ramlau, Simon, HovmoÈ ller & Zou

(1996). Nature (London), 382, 144±146] and Ti45Se16 [Weirich (2001). Acta Cryst.

A57, 183±191] determined previously from selected-area electron diffraction

(SAED) data have been checked for their correctness by means of total energy

calculations within the non-local density functional theory. The reliability of the

used method was veri®ed by test calculations carried out for the structurally

related compound Ti8Se3, which is well known from single-crystal X-ray

diffraction [Weirich, PoÈ ttgen & Simon (1996). Z. Kristallogr. 212, 929±930]. For

Ti8Se3, structural models from both experiment and calculation show a perfect

match (average agreement 0.01 AÊ ). This proves that the geometrical optimized

models from ®rst-principles calculation can be used as a reliable alternative

when good-quality X-ray results cannot be obtained. Calculations carried out

for the two structures determined from electron crystallography yielded average

improvement of the atomic coordinates of 0.04 and 0.09 AÊ for Ti11Se4 and

Ti45Se16, respectively. The optimized cell parameters of the monoclinic

structures (both space group C2=m, No. 12) are a = 25.51, b = 3.43, c =

19.19 AÊ , � = 117.9� for Ti11Se4 and a = 36.31, b = 3.45, c = 16.59 AÊ , � = 92.1� for

Ti45Se16. These results prove that crystals that are too small for single-crystal

X-ray diffraction and are dif®cult to solve by powder diffraction may

nevertheless be amenable to accurate structure determination by electron

diffraction structure analysis using data from standard SAED and the

assumption of quasi-kinematical scattering. Moreover, this study shows that

geometry optimization by ®rst-principles calculations is the perfect tool for

validation and improvement of complex structural models, which are suspected

to have errors owing to the poor quality of experimental data.

1. Introduction

Electron crystallography has gained increasing attraction

during the last decade since it allows determination of the

atomic structure of extremely small crystallites, often only a

few tens of nanometres in size (for the current status of

electron crystallography, see Dorset & Gilmore, 2003).

Besides several experimental obstacles in solving and re®ning

a structure from electron-microscopy data, the ®nal step ± the

validation of the obtained result ± is a dif®cult matter in

general (Spek, 2003). The low-R-factor criterion, which is

commonly used in X-ray crystallography to indicate the

correctness of a structure, can usually not be applied owing to

the non-kinematical nature and/or poor quality of the electron

data. To solve this dilemma, energy minimization and

geometrical optimization by ®rst-principles calculations within

the density functional theory were recently used to verify the

structure of �-Ti2Se, which was only accessible by electron

diffraction (Weirich et al., 2000; Weirich & Albe, 2001; Albe &

Weirich, 2003). The success of this approach has prompted the

present author to check the even more complex structures of

Ti45Se16 (Weirich, 2001) and Ti11Se4 (Weirich, Ramlau et al.,

1996), which could also only be determined using electron

crystallography methods. Contrary to the (orthorhombic)

structure of �-Ti2Se, the latter two structures belong to the

monoclinic system. Hence a reference calculation was carried

out for the structurally related compound Ti8Se3 (Weirich et

al., 1996), in order to allow an estimate of how accurately such

complex structures could be reproduced by quantum-

mechanical calculations.

2. Method

The density functional theory (DFT) has recently become a

standard for ab initio computer calculations in solid-state

materials research and crystallography (Milman & Winkler,

1999; Winkler, 1999). Such calculations have been employed
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for example to optimize rough structure models (Le Page et

al., 2002), to obtain an improved initial model for Rietveld

re®nement from an intelligent guess (Song et al., 2002) or to

complete structural fragments and re®ne H-atom positions

(Kaduk, 2002). At present, there exist several codes for

parameter-free DFT calculations employing pseudopotentials

and plane waves.1 The main programs used for such calcula-

tions are the Cambridge Serial Total Energy Package,

CASTEP (Payne et al., 1992; Milman et al., 2000) and the

Vienna Ab initio Simulation Package, VASP (Kresse &

FurthmuÈ ller, 1996). Other programs have been developed

more recently, e.g. ABINIT (Gonze et al., 2002). As an alter-

native to a plane-wave basis with pseudopotentials, it is also

possible to use localized atomic basis sets instead. This

approach was originally developed for small systems like

molecules and clusters and was later modi®ed to work also for

periodic structures (Delley, 2000). Nevertheless, all results

presented in the following were obtained with the program

CASTEP (Materials Studio, Accelrys Inc., San Diego, CA,

USA) running on a 1.8 GHz PC equipped with 1 Gbyte RAM.

The calculations for the three structures investigated here

were carried out for space-group symmetry C2=m (No. 12)

with non-relativistic ultra-soft pseudopotentials (Lee, 1991)

and the general-gradient approximation (GGA) to include

exchange and correlation (Perdew & Wang, 1992). Unit-cell

and internal coordinates were optimized by applying a BFGS2

scheme (Fischer & AlmloÈ f, 1992).

3. Results

3.1. Ti8Se3

Lattice parameters and re®ned atomic positions from an

earlier single-crystal X-ray study on this compound (Weirich,

PoÈ ttgen & Simon, 1996) were used as input for the calculation.

The kinetic energy cut-off for plane waves was set to 350 eV

for this run, i.e. only basis functions with kinetic energy below

this value are included in the basis set. The calculation was

interrupted after 33 iterations (one and a half months), when

the energy change was less than 1 � 10ÿ6 eV per atom. The

r.m.s. displacement3 for the 16 titanium and 6 selenium atoms

in the asymmetric unit was practically zero (1 � 10ÿ6 AÊ ) and

the r.m.s. force less than 0.026 eV AÊ ÿ1 at this level. The

calculated lattice parameters for Ti8Se3 together with the

corresponding X-ray data are given in Table 1. The atomic

coordinates after geometrical optimization are listed in Table

2. Comparison of the result from ®rst-principles calculation

and single-crystal X-ray diffraction show an excellent match in

both lattice parameters and atomic coordinates. The lattice

constants a, b and c agree up to the second fractional digit and

the monoclinic angle differs by less than 0.5�. The agreement

of the two models in terms of atom coordinates is on average

0.01 AÊ (maximum deviation less than 0.04 AÊ for Ti9). The

corresponding structure model obtained from ®rst-principles

calculation is shown in Fig. 1.

3.2. Ti11Se4

The starting point for the calculation was lattice parameters

from X-ray powder diffraction and atomic coordinates

obtained from electron crystallography, i.e. structure solution

from a single high-resolution electron-microscopy image with

subsequent kinematical structure re®nement against inten-

sities from SAED (Weirich, Ramlau et al., 1996). The structure

optimization (cut-off energy 350 eV) was stopped after 27

Table 1
Lattice constants for the three investigated compounds as obtained from
experiment and from total energy calculations within non-local density
functional theory (DFT).

a (AÊ ) b (AÊ ) c (AÊ ) � (�)

Ti8Se3 (C2=m, No. 12)
X-ray (single crystal) 25.562 (4) 3.4411 (5) 19.701 (6) 122.25 (1)
DFT 25.56 3.44 19.70 122.7

Ti11Se4 (C2=m, No. 12)
X-ray (powder) 25.516 (11) 3.4481 (14) 19.201 (6) 117.84 (3)
DFT 25.51 3.43 19.19 117.9

Ti45Se16 (C2=m, No. 12)
SAED (single crystal) 36.53 3.45 16.98 91.7
DFT 36.31 3.45 16.59 92.1

Table 2
Atomic coordinates for Ti8Se3 (space group C2=m, No. 12) as obtained
from total energy calculations with the program CASTEP (see text).

All atoms are located on y = 0 (Wyckoff position 4i). The distance d gives the
deviation in aÊngstroÈ m units between the present structure model from
CASTEP and the previously determined single-crystal X-ray structure
(Weirich, PoÈ ttgen & Simon, 1996).

x z d (AÊ )

Ti1 0.0468 0.7180 0.01
Ti2 0.0660 0.0543 0.01
Ti3 0.0752 0.5680 0.01
Ti4 0.0951 0.4135 0.01
Ti5 0.1682 0.3404 0.02
Ti6 0.1968 0.7530 0.01
Ti7 0.2086 0.1291 0.02
Ti8 0.2240 0.6042 0.01
Ti9 0.2975 0.5357 0.04
Ti10 0.3338 0.1541 0.02
Ti11 0.4892 0.0840 0.01
Ti12 0.5121 0.4260 0.01
Ti13 0.5611 0.2856 0.01
Ti14 0.6511 0.1974 0.01
Ti15 0.7376 0.0426 0.02
Ti16 0.8733 0.0668 0.01
Se1 0.0701 0.1907 0.01
Se2 0.2421 0.2807 0.0
Se3 0.3675 0.4691 0.01
Se4 0.3930 0.3162 0.01
Se5 0.4449 0.1757 0.01
Se6 0.6304 0.0349 0.01

1 The ionic potentials of the atoms are replaced by pseudopotentials, which are
effective potentials that act only on the valence electrons of the system.
2 A standard algorithm for solving an optimization problem developed by
Broyden, Fletcher, Goldfarb & Shanno in 1970.

3 The root mean square, r.m.s., displacement is a measure of the atom shifts
that were necessary in the previous iteration step in order to decrease the total
energy of the system



iterations, which took about three months computing time.

The energy change was less than 5 � 10ÿ5 eV per atom, the

r.m.s. displacement for the 17 titanium and 6 selenium atoms

in the asymmetric unit was 0.022 AÊ and the r.m.s. force less

than 0.023 eV AÊ ÿ1 at this stage. Lattice parameters and atomic

coordinates obtained from calculation are listed in Table 1 and

Table 3, respectively. Comparison of lattice parameters from

X-ray powder diffraction and DFT calculation show agree-

ment for the two long axes within 0.05% whereas the short b

axis deviates by 0.6%. The monoclinic angle of the two models

agrees within less than 0.1�. The atomic coordinates of the two

models differ on average by 0.04 AÊ (maximum difference

0.13 AÊ for Ti17). Fig. 2 shows the optimized structure model of

Ti11Se4 in projection along its prominent short crystal axis.

3.3. Ti45Se16

Crystallographic data for the initial structure model were

taken from a recent electron crystallographic study on this

material, i.e. structure solution via direct methods with

intensities from selected-area electron diffraction and subse-

quent kinematical structure re®nement using the same data

(Weirich, 2001). The calculations (cut-off energy 310 eV) were

stopped after 46 iterations (six months), when the energy

change was less than 5 � 10ÿ5 eV per atom. The r.m.s.

displacement for the 23 titanium and 8 selenium atoms in the

asymmetric unit was less than 0.006 AÊ and the r.m.s. force less

than 0.04 eV AÊ ÿ1 at the last cycle. The calculated lattice

parameters are shown in Table 1, the optimized atomic coor-

dinates are compiled in Table 4. Analysis of the result shows a

rather large deviation for the c axis of 2.4%, whereas the a axis

agrees by 0.6% and the short b axis was perfectly reproduced

by calculation. The monoclinic angle differs by only 0.4�. The

agreement of the two models in terms of atom coordinates is

on average better than 0.09 AÊ (maximum deviation 0.20 AÊ for

Ti20). Fig. 3 shows the optimized structure model of Ti45Se16 in

projection along its prominent short crystal axis.

4. Discussion

The idea of improving poor-quality structure models with the

help of computer power is in general not a new one. Attempts

were made by Waser (1963), Smith & Arnott (1978), Meier &

Villinger (1969) and Baerlocher et al. (1978). These approa-

ches are mainly based on constraints like prede®ned distances

and angles between atoms, which are imposed during opti-

mization in order to ®nd the structure with the best geometry.

These approaches have been successfully applied to the

re®nement of less ordered polynucleotides, polysaccharides

and other ®brous materials (Smith & Arnott, 1978) and for

structural characterization of framework silicates (Baerlocher

et al., 1978). In order to work properly, all these approaches

require that the interatomic distances/angles of the investi-

gated system are well known (see Bergerhoff & Brandenburg,

1999; Allen et al., 1999). Other approaches to cope with this
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Table 3
Atomic coordinates for Ti11Se4 (space group C2=m, No. 12) as obtained
from total energy calculations with the program CASTEP (see text).

The distance d gives the deviation in aÊngstroÈ m units between the present
structure model from CASTEP and the previous kinematical re®nement with
electron data (Weirich, Ramlau et al., 1996).

x y z d (AÊ )

Ti1 0.0 0.0 0.0 0.0
Ti2 0.0837 0.0 0.9375 0.05
Ti3 0.2109 0.0 0.9295 0.03
Ti4 0.3009 0.5 0.8996 0.04
Ti5 0.4026 0.0 0.9346 0.03
Ti6 0.4872 0.0 0.8740 0.03
Ti7 0.0986 0.5 0.8349 0.05
Ti8 0.3817 0.5 0.7999 0.10
Ti9 0.4974 0.5 0.7528 0.01
Ti10 0.1177 0.0 0.7120 0.0
Ti11 0.2219 0.5 0.7070 0.02
Ti12 0.2893 0.0 0.6546 0.02
Ti13 0.3558 0.5 0.6036 0.09
Ti14 0.1599 0.0 0.5820 0.04
Ti15 0.0674 0.5 0.5708 0.01
Ti16 0.4761 0.5 0.5682 0.01
Ti17 0.2296 0.5 0.5345 0.13
Se1 0.1696 0.5 0.9915 0.10
Se2 0.1911 0.5 0.8159 0.05
Se3 0.3035 0.0 0.7985 0.0
Se4 0.0316 0.5 0.6803 0.04
Se5 0.4106 0.0 0.7187 0.09
Se6 0.3911 0.0 0.5320 0.07

Table 4
Atomic coordinates for Ti45Se16 (space group C2=m, No. 12) as obtained
from total energy calculations with the program CASTEP (see text).

The distance d gives the deviation in aÊngstroÈ m units between the present
structure model from CASTEP and the previous kinematical re®nement with
electron data (Weirich, 2001).

x y z d (AÊ )

Ti1 0.0 0 0.5 0.0
Ti2 0.0286 0.5 0.3681 0.05
Ti3 0.9401 0.5 0.4388 0.09
Ti4 0.9122 0 0.5497 0.11
Ti5 0.8961 0 0.3328 0.14
Ti6 0.8549 0.5 0.4694 0.06
Ti7 0.8780 0.5 0.6662 0.09
Ti8 0.7727 0.5 0.3391 0.10
Ti9 0.7884 0.5 0.6136 0.19
Ti10 0.7791 0 0.4819 0.12
Ti11 0.9475 0.5 0.2457 0.09
Ti12 0.0681 0.5 0.1686 0.17
Ti13 0.9788 0.5 0.0920 0.04
Ti14 0.0079 0 0.2053 0.05
Ti15 0.9110 0 0.1219 0.13
Ti16 0.9635 0 0.9533 0.05
Ti17 0.8196 0 0.2027 0.02
Ti18 0.8429 0.5 0.0625 0.12
Ti19 0.8018 0.5 0.8985 0.11
Ti20 0.7804 0 0.0132 0.20
Ti21 0.8679 0 0.9295 0.11
Ti22 0.7379 0 0.8635 0.13
Ti23 0.8134 0 0.7467 0.03
Se1 0.7596 0.5 0.7585 0.06
Se2 0.8602 0.5 0.8123 0.05
Se3 0.9126 0.5 0.0006 0.07
Se4 0.8753 0.5 0.2122 0.11
Se5 0.8269 0 0.3623 0.01
Se6 0.8395 0 0.5841 0.02
Se7 0.9730 0 0.3495 0.02
Se8 0.0706 0 0.2918 0.12
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problem, in particular for solving crystal structures, make

extensive use of empirical potential functions (Putz et al.,

1999) or solid-state force-®eld calculations to validate the

proposed structural model (Engel et al., 1999). However,

whereas organic, and also many inorganic, materials often ®t

well into one of the above-mentioned schemes (the carbonÐ

carbon distance for example is practically a constant), metallic

systems are much more ¯exible and interatomic distances can

vary over a much wider range. For this reason, ®rst-principles

calculations, which do not rely on empirical or ®xed param-

eters, are best suited to geometrical optimization of such

systems (see Milman et al., 2000). The price to pay, however, is

the enormous computing times that are needed to optimize

larger structures.

Nevertheless, in an earlier study (Albe & Weirich, 2003) on

the orthorhombic structure of �-Ti2Se, it was shown that

CASTEP geometrical optimization yields an identical struc-

ture model to that obtained by single-crystal X-ray diffraction.

Lattice parameters were in agreement within 0.1% and the six

titanium and three selenium atoms per asymmetric unit

differed on average by only 0.02 AÊ in position (maximum

deviation 0.04 AÊ ). Thus, the geometrical optimized structure

model obtained from ®rst-principles calculations was consid-

ered as a reliable reference model for structure validation in

cases where no or only incomplete structural data exist. Using

this argument, it was then possible to con®rm the structure of

�-Ti2Se, which was only accessible by electron diffraction

structure analysis. Despite this promising result, it remained

unclear if this approach would work as successfully for more

complex structures, in particular for structures with variable

cell angles. Nonetheless, the result obtained for Ti8Se3

demonstrates the reliability of this approach for such cases.

The lattice constants for this test structure agree up to the

second fractional digit and the monoclinic angle differs by less

than 0.5�. The corresponding atomic coordinates for Ti8Se3

agree on average by 0.01 AÊ (maximum deviation less than

0.04 AÊ ). With this proof of reliability for complex monoclinic

titanium±selenium structures, it is possible to judge the quality

of the other two structures for which no structural models

from X-ray diffraction exist.

The compound Ti11Se4 was ®rst identi®ed as one compo-

nent in a biphasic powder sample obtained from high-

temperature synthesis. Owing to the absence of large single

crystals, the structure was solved from high-resolution elec-

tron-microscopy images via crystallographic image processing.

A subsequent (kinematical) re®nement using a data set of h0l

SAED intensities that were estimated from an exposure series

on ®lm yielded an R factor of 14.7%. Improved lattice par-

ameters were later derived from the indexed peak positions in

the X-ray powder diagram (Weirich, Ramlau et al., 1996). A

recently undertaken reinvestigation of the sample with the

aim to re®ne the earlier determined atom positions by Riet-

veld analysis of the X-ray powder pattern failed owing to the

presence of impurities and the complexity of the structure.

Figure 2
Structure model of Ti11Se4 in projection along the short b axis. The model
represents the geometrical optimized structure as obtained from total
energy calculations with the program CASTEP (see text). Ti = dark
circles, Se = light circles

Figure 3
Structure model of Ti45Se16 in projection along the short b axis. The
model represents the geometrical optimized structure as obtained from
total energy calculations with the program CASTEP (see text). Ti = dark
circles, Se = light circles

Figure 1
Structure model of Ti8Se3 in projection along the short b axis. The model
represents the geometrical optimized structure as obtained from total
energy calculations with the program CASTEP (see text). Comparison
with the structures shown in Figs. 2 and 3 shows the common feature of
distorted corner- and edge-sharing (condensed) octahedral Ti6 cluster
units. The Se atoms are located inside the almost regular trigonal prisms
of titanium (Ti = dark circles, Se = light circles).



However, the results obtained in this study from geometrical

optimization asserted the correctness of the earlier deter-

mined structure. The lattice parameters could be reproduced

within 0.6% for the short axis and within 0.05% for the two

long crystal axes. Notably, the monoclinic angle of the

experimental and calculated model differs by just 0.1�. The

atomic coordinates agree on average within 0.04 AÊ (maximum

difference 0.13 AÊ ). The observed small differences between

the two models may originate from errors in estimating the

intensities from ®lm, in¯uences of dynamical and secondary

scattering on the intensities (see Weirich, 2003) and a small

error since only projected data have been used in the re®ne-

ment (see Vainshtein, 1964, p. 282ff.).

Analogous to the latter compound, Ti45Se16 was ®rst

discovered by electron microscopy as one component in a

polyphasic powder sample. Again, a rough structure model of

the compound was derived from high-resolution electron-

microscopy images (Weirich, 1996). In a later study, the

structure was independently solved and (kinematically)

re®ned (R factor 33%) using h0l SAED intensities estimated

from a typical diffraction pattern recorded on EM ®lm

(Weirich, 2001). The result obtained in this study shows that

the earlier published structural parameters from electron

diffraction are very close to the geometrical optimized model.

The striking discrepancies of some lattice parameters (c axis

2.4%, a axis 0.6%) are probably caused by a slight misalign-

ment of the crystal from the ideal (eucentric) specimen height

and by small crystal tilt (a axis = tilt axis), which was detected

during closer inspection of the negative. Owing to the

presence of several phases in the sample, X-ray powder data

could not be employed in this case to get more accurate cell

parameters for comparison. However, the monoclinic angle

determined from the electron diffraction pattern deviates by

just 0.4� from the calculation. Since only a single electron

diffraction pattern was used to estimate intensities (for the

method, see Zou et al., 1993a,b), the average deviation

between experimental and calculated atomic coordinates is

accordingly much larger than for Ti11Se4, where a more

precise data set from an exposure series on ®lm was used.

Thus, slight misplacements of atoms in the original model of

Ti45Se16 can be attributed to errors in the estimated intensities

and to contributions by dynamical diffraction and/or

secondary scattering. Misplacements of atoms of the same

order were also found for much less complicated structures,

such as �-Ti2Se and Zr2Se, which have been determined using

the same approach as described for Ti45Se16 (Albe & Weirich,

2003; Weirich, 2003, 2004). However, despite the rather poor

quality of the data for Ti45Se16 (R factor after LS re®nement

33%), the experimental model is surprisingly close to the

optimized model from calculation which can be explained

using Sayre's theorem (see Weirich, 2001, 2003).

All metal-rich compounds investigated here contain octa-

hedral Ti6 cluster units, which can be regarded as fragments of

the body-centered cubic (b.c.c.) metal itself (Fig. 4a). As

pointed out by Simon (1981), these units may form larger

regions by condensation via common corners, edges or faces as

outlined in Figs. 1, 2 and 3. Whereas the metal-rich regions are

obviously rather ¯exible and tolerate distortions, the trigonal

prisms around the Se atoms appear almost perfectly regular

[see for comparison the ideal polyhedra in Figs. 4(b) to (d)].

This suggests that the energy gain that goes along with

formation of quasiregular trigonal prisms is likely to be one of

the driving forces that stabilizes these metal-rich structures.

The trend to favor formation of almost perfect trigonal prisms

is also seen in the plots of the nearest TiÐSe distances (Fig. 5),

which shows a large number of TiÐSe distances in the narrow

range between 2.58 and 2.66 AÊ for the three structures.
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Figure 5
Calculated nearest atom distances for the geometrical optimized
structures of Ti45Se16 (a), Ti11Se4 (b) and Ti8Se3 (c). All structures show
a large number of TiÐSe distances in the range between 2.58 and 2.66 AÊ .
These distances belong to the quasiregular trigonal prisms formed by the
titanium atoms around selenium. This suggests that the energy gain that
accompanies formation of trigonal prisms with optimized TiÐSe
distances is probably one of the dominant driving forces that stabilizes
this type of metal-rich structure.

Figure 4
Types of polyhedra that build up the structures of Ti8Se3, Ti11Se4 and
Ti45Se16. Each polyhedron is shown in clinographic view (left) and as
observed when the structure is projected along the short crystal axis (right
view). Titanium atoms are shown in black, selenium atoms in light grey.
(a) Cube of body-centered �-titanium as vertex linked (condensed) Ti6
octahedron; (b) single-capped trigonal prism with selenium at the center;
(c) double-capped trigonal prism; (d) triple-capped trigonal prism.
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5. Conclusions

The complex crystal structure of monoclinic Ti8Se3 was used to

prove that structural models obtained from ab initio total

energy calculations within density functional theory are

practically identical to those obtained from standard single-

crystal X-ray diffraction. The accuracy of the optimized atom

positions is analogous to that from routine powder studies

(Milman et al., 2000; Le Page et al., 2002). Total energy

calculations are hence a perfect tool to check and optimize

crystal structures that have been determined from poor-

quality data sets. This approach is of special importance for

electron crystallography, which aims at crystal structure

determination of nanosized materials beyond the capabilities

of conventional X-ray diffraction. The quality of standard

electron diffraction data suffers frequently from misorienta-

tion of the crystal (crystal tilt) and dynamical/secondary

scattering. Moreover, errors in the ®nal structure model

(misplaced atoms) may result from wrongly estimated inten-

sities of strong re¯ections (®lm data) and in cases when only

projected data are used for re®nement (present case).

However, these errors are totally eliminated when the struc-

ture is optimized using the method described above.

The success of the proposed approach is demonstrated on

the complex metal-rich structures of Ti11Se4 and Ti45Se16,

whose structures could only be determined from electron-

microscopy data. Both of these previously unknown structures

(each of them represents a structure type) are now con®rmed

by ®rst-principles calculations. The calculations provide for

both structures improved atomic coordinates (improvement of

0.04 and 0.09 AÊ , respectively) and yielded for Ti45Se16 a set of

more accurate lattice constants. Thus the obtained results can

be interpreted two ways:

(i) The structures were almost accurately determined

despite the use of intensities determined from EM ®lm and

the crude approximation of quasikinematical scattering for

re®nement.4 Thus, crystals that are too small for single-crystal

X-ray diffraction and dif®cult to solve by powder diffraction

may nevertheless be amenable to accurate structure deter-

mination by electron diffraction structure analysis from stan-

dard electron diffraction data.

(ii) Provided the geometrical optimization using ®rst-prin-

ciples calculations works reliably for a chosen system (which

must be checked), only a roughly correct model ± close

enough to the global minimum ± might be suf®cient to guide

the program to the structure with lowest energy. The required

initial model can either be obtained from structure solution

via direct methods with sparse electron diffraction data or

from high-resolution electron-microscopy images using crys-

tallographic image processing (HovmoÈ ller et al., 1984; Weirich

et al., 1997) or exit-wave reconstruction (Coene et al., 1996;

Zandbergen et al., 1997).
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